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§ Understand the use of private helper 

methods hidden from the public interface 

of a class

§ Know that the calling object can be omitted 

if it is the same as the calling object in the 

invoking method

§ Know that a main program can appear in 

any class including the class which it uses

§ Understand how to use static variables 

and  static methods

Objectives
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§ Explain the uses of static variables and

static methods

§ Understand the meaning and use of the 

reserved word this in Java

§ Be able to use the common static methods 

in the Math class

§ Explain what a wrapper class is and why it 

is used

§ Be able to wrap and unwrap primitive values

Objectives
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§ Understand the automatic boxing and 

unboxing of wrapper classes in Java

§ Make use of common methods in the 

wrapper classes

§ Be able to design a Java program in a top-

down manner

§ Be able to test a complex program using 

driver programs and stubs

Reading – Savitch:  Chapters 5.2, 6.2 – 6.3

Objectives
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§ The class SpeciesFourthTry discussed in 

Topic 3 has the following attributes and 

methods:
// Class from Topic 3 – skeleton only

// includes equals method

import java.util.Scanner;        

public class SpeciesFourthTry {

// Instance variables

private String name; 

private int population;

private double growthRate;

Example Re-visited
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// Methods

public void readInput()

{

// …. code for the method readInput  

}

public void writeOutput()

{

// …. code for the method writeOutput  

}

public int predictPopulation(int years)

{

// …. code for the method 

}

Example Re-visited
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// Accessor or Get methods

public String getName()

{

return name;

}

public int getPopulation()

{

return population;

}

public double getGrowthRate()

{

return growthRate;

}

Example Re-visited
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// Mutator or Set method

public void setSpecies(String newName, 

int newPopulation, double 

newGrowthRate)

{

// … code for the method set  

}

Example Re-visited
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// Equals method: tests equality of 2 species 

public boolean equals(SpeciesFourthTry

otherObject)

{ 

return

((this.name.equalsIgnoreCase(otherObject.name))

&&(this.population == otherObject.population)

&&(this.growthRate == otherObject.growthRate));

}

} // end class SpeciesFourthTry

Example Re-visited
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Example UML Class Diagram
SpeciesFourthTry

- name: String

- population: int

- growthRate: double

+ readInput(): void

+ writeOutput(): void

+ predictPopulation(): int

+ setSpecies(String newName, int newPopulation,

double newGrowthRate): void

+ getName(): String

+ getPopulation(): int

+ getGrowthRate(): double

+ equals (SpeciesFourthTry otherObject): boolean
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import java.util.Scanner;       

/** Client Program / Test program */

public class SpeciesFourthTryDemo {

public static void main(String[] args) {

SpeciesFourthTry s1= new SpeciesFourthTry();

SpeciesFourthTry s2 =new SpeciesFourthTry();

int numberOfYears, futurePopulation;

System.out.println("Enter number of years:");

Scanner keyboard = new Scanner(System.in);

numberOfYears = keyboard.nextInt( );

s1.readInput();

s1.writeOutput();

Example Client
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futurePopulation = s1.predictPopulation( 

numberOfYears);

// …………………

s2.setSpecies("Klingon ox", 10, 15);

s2.writeOutput(); 

if (s1.equals(s2))

System.out.println("Two species are same");

else 

System.out.println("Two species not same");

}// end main

}// end SpeciesFourthTryDemo

Example Client
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§ A method in a class might involve a lengthy or complex 

calculation

§ So break it down into smaller parts

§ Use helper methods to perform some of the parts

§ Helper methods can be declared to be private

§ They are not part of the public interface of the class: 

they are part of the implementation

§ Look at the following example (class Oracle) from 

Savitch to see how helper methods are invoked

Methods Calling Methods



15

import java.util.Scanner;        

public class Oracle {

private String oldAnswer = "The answer is in your 

heart.";

private String newAnswer;

private String question;

public static void main(String[] args) {

Oracle delphi = new Oracle();

delphi.chat();

}// end main

private void update() {

oldAnswer = newAnswer;

}

Example: Oracle Class
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public void chat() {

System.out.println("I am the oracle.");

System.out.println("I will answer questions.");

Scanner keyboard = new Scanner(System.in);

String response;

do {

answer();

System.out.println("Do you wish to ask 

another question?");

response = keyboard.next();

}while(response.equalsIgnoreCase("yes"));

System.out.println("Oracle will now rest.");

}

Example: Oracle Class
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private void answer() {

System.out.println("What is your question?");

Scanner keyboard = new Scanner(System.in);

question = keyboard.nextLine();

seekAdvice();

System.out.println("You asked the question:");

System.out.println(“ ” + question);

System.out.println("Now, here is my answer:");

System.out.println(oldAnswer);

update();

}

Example: Oracle Class
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private void seekAdvice() {

System.out.println("I need some help on that.");

System.out.println("Please give 1 line advice.");

Scanner keyboard = new Scanner(System.in);

newAnswer = keyboard.nextLine();

System.out.println("Thanks. That helped lots.");

}

} // end class Oracle

Example: Oracle Class
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§ See how the calling object can be omitted 

(when calling the helper method) if it is the 

same as the calling object in the invoking 

method

§ The calling object delphi invokes its own 

method chat() as

delphi.chat();

§ Within delphi.chat(), the helper method is 

invoked without using the name of the 

object and the dot notation, as follows:

Methods Calling Methods
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public void chat () {

……

answer();

……

}

§ answer() is a helper (private) method which calls 

its two helper methods as follows:
private void answer() {

……

seekAdvice();

……

update();

}

Methods Calling Methods
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§ Also notice (in the Oracle class example) 

that the main() method has been placed 

inside the class which it uses

§ The main() method in this case acts like a client 

and is useful for testing purposes

§ Note that within the main() method, you 

must create an object of the class before 

you can invoke any of the methods

Methods Calling Methods
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§ Eg: to invoke the method chat() within 

main(), you need to create an object of type 

Oracle in the usual way:

Oracle delphi = new Oracle();

§ And then invoke a method of this object as: 

delphi.chat();

§ Since main() is a static method, it belongs 

to the class, and there will be only one 

main() method

Methods Calling Methods
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§ When user executes the program, the JVM 
(Java Virtual Machine) looks for the main()

method.

§ The main() method starts running, creates 

an object delphi, invokes its chat() 

method (which uses a helper method which 

in turn uses two helper methods), and gets 

the stuff done

Methods Calling Methods
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§ The reserved word this in Java stands for 

the name of the current (calling) object

§ That is, it refers to the object that contains the 

reference

§ Methods called in an object definition file do 

not need to reference itself (the object)

§ You may either use "this.", or omit it, 

since it is presumed

§ For example, if answer() is a method 

defined in the class Oracle:

The reserved Word this
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public class Oracle {

...

public void chat() {

……

// One way to invoke the answer() method

// defined in this file is:

// this.answer ();

// Another way is to omit "this."

answer (); // "this." is presumed here

……

}

...

} // end class Oracle

The reserved Word this
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When an Object is Required

§ Methods called outside the object definition 

require an object name to precede the 

method name

§ For example:

Oracle delphi = new Oracle();

// delphi is not part of the 

definition // code for Oracle

...

// chat is a method defined in Oracle

delphi.chat();

...
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When an Object is Required

§ Similarly in another program, the call to 

method chat() may be 

Oracle myObject = new Oracle();

myObject.chat(); 

§ And the call to method answer () in this 

case would mean
myObject.answer();
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static Variables
§ When a Java program is running, if 

something is static then there is only one 

copy of it, no matter how many objects are 

created

§ Static variables are shared by all objects of a 

class
§ Variables declared static final are 

considered constants – their values cannot be 

changed. Eg:

public static final int UPPER_LIMIT = 999;

§ Variables declared static (without final) can 

be changed

private static int counter;
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static Variables
§ Only one instance of the static variable exists 

which can be accessed by all objects of the 

class

§ Static variables can be public or private –

should normally be private and should be 

accessed or changed only by accessor and 

mutator methods

§ Static variables are also called class 

variables

§ Therefore, Java has three kinds of 

variables: local variables, instance 

variables, and static variables



30

Local, instance, and 

static variables

§ local variables:  declared in a method

§ instance variables: declared in a class 

definition outside any method – belong to an 

object

§ static variables: class variables - every 

object shares the one and only one



31

static Methods

§ Some methods may have no relation to any 

type of object

§ Eg: a method to compute the maximum of two 

numbers or a method to find the square root of 

a number

§ In such cases a method can be declared to 

be static
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static Methods

§ Eg:

public class MyClass {

…

public static boolean isPositive(int n){

return (n>0);

}

…

} // end MyClass
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static Methods

§ The static method must still belong to a 

class 

§ It does not need a calling object - the class 

name is normally used instead during its 

invocation. Eg: 

if (MyClass.isPositive(x)) 

System.out.println(“Positive”);

§ static methods are also called class 

methods
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static Methods

§ Note that it is possible to create an object of 
MyClass and use it to invoke the 

isPositive() method, but doing so can be 

confusing to people reading your code

§ Note that all other methods (non-static) 

must be part of an object, so an object must 

exist before they can be invoked

§ Since a static method does not need a 

calling object, it cannot refer to a (non-

static) instance variable of the class
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static Methods
§ Likewise, a static method cannot call a 

non-static method of the class (unless it 

creates an object of the class to use as a 

calling object)

§ Use static methods:
§ For methods which do not involve an object

§ Small private helper methods in a class

§ Generally useful methods to do with numbers 

or Strings or input/output
§Eg: finding the maximum of two numbers, computing 

a square root, generating a random number
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static Methods

§ Static methods are commonly used to 

provide libraries of useful and related 

methods

§ Examples:
§ The main method in any class

§ The Math class
§Automatically provided with Java

§Methods include pow, sqrt, max, min, and many more 

methods
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Example Class
// File: CircleCalculator.java

/** Class with static methods to perform calculations 

on circles. */

public class CircleCalculator {

// constant

public static final double PI = 3.14159;

public static double getArea(double radius) {

return (PI*radius*radius);

}

public static double getCircumference(double radius)

{

return (PI*(radius + radius));

}

} // end class CircleCalculator
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Example Client

// File: CircleCalculatorDemo.java

import java.util.Scanner;     

public class CircleCalculatorDemo {

public static void main(String[] args) {

double radius;

System.out.println("Enter the radius of a " 

+ "circle in inches:");

Scanner kb = new Scanner(System.in);

radius = kb.nextDouble();

System.out.println("A circle of radius " + 

radius + " inches");
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Example Client

System.out.println("has an area of " +

CircleCalculator.getArea(radius) + 

" square inches,");

System.out.println(" and circumference of " 

+CircleCalculator.getCircumference(radius)+

" inches.");

} // end main

} // end class CircleCalculatorDemo
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§ The predefined class Math is automatically 

provided as part of the Java language, and 

contains a number of the standard 

mathematical methods

§ All these methods are static and are 

called by using the class name Math in 

place of a calling object

static Methods in Main 

Class
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§ Eg:

System.out.println("The maximum of 5 and 

7 is = " + 

Math.max(5,7));

Powers: Math.pow(2.0, 3.0) returns 8.0

Absolute value: Math.abs(-4) returns 4 

Math.abs(5) returns 5

Math.abs(-5.1)returns 5.1

Maximum: Math.max(5, 6) returns 6

Minimum: Math.min(5.9, 6.5) returns 5.9

static Methods in Main 

Class
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§ Eg:

Rounding: Math.round(6.8) returns 7

Math.round(6.49) returns 6

Ceiling: Math.ceil(3.2) returns 4.0

§ returns a whole number of type double

§ need to cast if you want an int. Eg:

int j = (int)Math.ceil(3.2);

Floor: Math.floor(3.2) returns 3.0

§ this too returns a whole number of type double, 

and need to type cast if you want an int

static Methods in Main 

Class
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§ Eg:

Square root: Math.sqrt(4.0) returns 2.0

Random: Math.random() returns a random 

number greater than or equal to 

0.0 and less than 1.0

§ See the on-line documentation for many more

§ Note the Math class also contains some static

constants such as Math.PI which is a double with 

value approximately equal to p.

static Methods in Main 

Class
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NOTE: main method

§ You can put a main method in any class

§ See class Oracle above in these slides

§ Usually main is by itself in a class definition

§ Sometimes it makes sense to have a main

method in a regular class definition

§ When the class is used to create objects, the 

main method is ignored

§ Adding a diagnostic main method to a class 

makes it easier to test the class's methods
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NOTE: main method

§ You can put a main method in any class

§ Because main must be static, you cannot invoke 

non-static methods of the class in main unless 

you create an object of the class

§ Normally you would not put a main method in a 

class that is used to create objects unless it is for 
test purposes
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Wrapper Classes
§ As we know, Java treats primitive types and 

class types differently

§ Eg: the variables (arguments) of primitive types 

are passed to other methods using call-by-value

whereas object variables are passed using call-

by-reference

§ Similarly, the assignment operator == behaves 

differently for primitive types and for class types

§ Occasionally we need to be able to make 

things uniform, and treat a primitive type as 

an object



47

Wrapper Classes
§ Java has one special class associated with 

each primitive type - called wrapper classes 

- they "wrap up" the primitive data types as 

objects 

§ Eg: there is an Integer class corresponding to 
int

§ Other wrapper classes include Double, Long,  

Character and Boolean corresponding to the 

primitive types double, long, char and 

boolean, respectively

§ All primitive types have an equivalent class
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Wrapper Classes

§ Why?

§ Some data structures which contain many things 

are designed to contain Objects only

§ The Wrapper classes have various useful 

methods, including ones to convert back to 

primitive types
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Primitive 

type

Class type Method to convert back

to primitive type

int Integer intValue()

long Long longValue()

float Float floatValue()

double Double doubleValue()

char Character charValue()

Wrapper Classes
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§ Converting a primitive to a wrapper object, 

for example:

Integer n = new Integer(78);

§ declares an instance n of the Integer wrapper 

class with the value 78

§ The object n is just an Object version of the 

number 78

§ The int 78 is wrapped up as an Object 

belonging to the Class Integer

Wrapper Classes
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§ Unwrapping, for example:

int i = n.intValue();

§ the method intValue in the Class Integer

returns the int which is wrapped up inside the 

wrapper object

§ Similarly:

Double D = new Double(4.5);

double d = D.doubleValue();

Wrapper Classes
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Unboxing

§ Wrapping (converting/type casting) a value 

of a primitive to an object of its 

corresponding wrapper class is called 

boxing

§ Starting with Java 5.0, boxing is done 

automatically. Eg:

Integer n = 78;

§ is equivalent to writing:

Integer n = new Integer(78);
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Unboxing

§ Similarly, an object of a wrapper class can be 

converted to a value of a corresponding 

primitive type automatically (called automatic 

unboxing)

int i = n;

§ is equivalent to:

int i = n.intValue();



54Automatic Boxing and 

Unboxing

§ Note that automatic boxing and unboxing 

also apply to parameters

§ A primitive argument can be provided for a 

corresponding formal parameter of the 

associated wrapper class

§ A wrapper class argument can be provided for a 

corresponding formal parameter of the 

associated primitive type
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Useful Constants and static

Methods in Wrapper Classes

§ Integer.MAX_VALUE returns the largest value 

allowed in type int

§ Also, Integer.MIN_VALUE, 

Double.MAX_VALUE,  Double.MIN_VALUE,

etc.

§ Static methods in the wrapper classes can 

be used to convert a string to the 
corresponding number of type int, long, 
float, or double
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Useful Constants and static

Methods in Wrapper Classes

§ Eg:

String str = “499.95”;

double d = Double.parseDouble(str);

§ or use:

Double.parseDouble(str.trim());

§ if the string has leading or trailing 

whitespaces
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Useful Constants and static

Methods in Wrapper Classes
§ Similarly:

String numString = “727”;

int i = Integer.parseInt(numString);

long l = Long.parseLong(numString);

float r = Float.parseFloat(“499.95”);

§ Methods for converting strings to the 

corresponding numbers are also available. 

Eg: Integer.toString(78), 
Long.toString(78), 

Float.toString(499.95), and 

Double.toString(499.95)
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Character Class static

Methods

§ The Character class wraps a char. Use:

Character c = new Character(‘a’);

§ to wrap a char

§ Checks if c1 and c2 wrap the same char

c1.equals(c2);

// returns ‘A’

Character.toUpperCase(‘a’);
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Methods
§ Eg:

char firstChar = 'a'; 

char secondChar = 

Character.toUpperCase(firstChar);

Character.toLowerCase(‘A’)// returns ‘a’

Character.isUpperCase(‘A’)// returns 

true

Character.isLowerCase(‘A’)//returns 

false

// returns false

Character.isWhitespace(‘A’)
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Methods
§ Eg:

// returns true if response is a digit 

// character in the range 0 to 9 and    

// false otherwise

Character.isDigit(response)

Character.isLetter(‘A’) // returns true

Character.isLetter(‘?’)// returns false

// returns the String “a”

Character.toString(‘a’)
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Top-Down Design

§ = stepwise refinement = divide and conquer 

= breaking the problem down into smaller 

steps

§ In pseudo-code, write a list of sub-tasks that 

the method must do

§ If you can easily write Java statements for a 

sub-task, you are finished with that sub-task

§ If you cannot easily write Java statements 

for a sub-task, treat it as a new problem and 

break it up into a list of sub-tasks
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Top-Down Design

§ Eventually, all of the sub-tasks will be small 

enough to easily design and code

§ Solutions to sub-tasks might be 

implemented as private helper methods

§ Top-down design is also known as divide-

and-conquer or stepwise refinement



63

Top-Down Design

§ Here is an example problem:

§ The user is given a list of items of various nett 

prices

§ Some items are 0% rated for the GST, call 

these category Z

§ The other items are rated at 10% for the GST, 

call these category G
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Top-Down Design

§ The user should enter the category of each item 

and then the price in cents

§ The program should display the nett price, tax, 

and total cost of each item, and display a 

running total of tax and total cost

§ The user can enter category ‘Q’ to finish

§ Display all amounts in dollars and cents
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Top-Level Pseudo-code

total = 0

totalTax = 0

cat = ’A’       //anything but ‘Q’

while (cat != ‘Q’) {

cat = get category letter from user

if (cat !=’Q’){

price = get cents from user

tax = taxOn( cat, price)

cost = price + tax

total = total + cost

totalTax= totalTax + tax
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Top-Level Pseudo-code

//all values in cents

DisplayInDollars(“net price”, price)

DisplayInDollars(“item tax”, tax)

DisplayInDollars(“item cost”, cost)

DisplayInDollars(“total tax”, totalTax)

DisplayInDollars(“total cost”, total)

}//end if

}//end while

say goodbye

§ In order to complete the description of the 

program we then need to consider the 

procedures which are used here
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Tips for Writing Methods

§ Apply the principle of encapsulation and 

detail hiding by using the public and private 

modifiers judiciously

§ If the user will need the method, make it part of 

the interface by declaring it public

§ If the method is used only within the class 

definition (a helper method, then declare it 

private)
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Tips for Writing Methods

§ Create a main method with diagnostic (test) 

code within a class's definition

§ Run just the class to execute the test/diagnostic 

program

§ When the class is used by another program the 

class's main method is ignored
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Test Methods Separately
§ Carefully test each method individually so 

you are (quite) sure that each method works 

correctly

§ Test programs are sometimes called driver

programs

§ A driver program is usually a main program 

(main method) designed only to test that a 

method works

§ Keep it simple: test only one new method at a 

time

§Driver program should have only one untested 

method
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Test Methods Separately
§ If method A calls method B, then we think of 

method A being above method B. There are two 

approaches to testing: 

§ Top down testing

§Also called testing using stubs: test method A 

first and use a stub for method B

§A stub is a method that stands in for the final 

version and does little actual work.  It usually 

does something as trivial as printing a message 

or returning a fixed value.  The idea is to have it 

so simple that you are nearly certain it will work
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Program Testing:

Test Methods Separately

§ Bottom up testing

§Test method B fully (eg, using a driver program) 

before testing method A

§Bottom-up testing means being sure that 

method B works before testing method A

§Eg: check the procedure for getting a category 

letter from the user before checking the overall 

program
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§ Here is a program including the category 

procedure and a driver program
import java.util.*;

public class CatTest {

public static void main(String[] args) { 

// driver method for test purposes only

char cat = ‘a’;

while (true) {  

cat = getCat();

System.out.println(“Your category was ” +cat);

} //end of while

} //end of main

Example
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private static char getCat() {

char c;

Scanner kb = new Scanner(System.in);

do {

System.out.println(“Enter a category Z, G or Q”);

c =  kb.next().charAt(0);

c = Character.toUpperCase(c);

if ((c != 'Z')&&(c != 'G')&&(c != 'Q'))

System.out.println("*Error-invalid category");

} while ((c !=’Z’)&&(c!=’G’)&&(c!=’Q’));

return c;

} //end of getCat

} //end of class

Example
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§ Sometimes you want to test a large method 

before testing all the smaller methods which 

it calls

§ For example, just to make sure that the 

overall approach looks promising

§ Use a stub = a simplified version of a 

method for testing purposes

§ Then just include a stub for any small 

methods which you have not developed or 

checked yet

Testing via Stubs
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§ Eg: here is a stub for DisplayInDollars()
private static void DisplayInDollars

(String msg, int cents) {

System.out.println(“DisplayInDollars Stub”);

System.out.println(“Message is: ” + msg);

System.out.println(“Cents value is: ” + cents);

}

§ At some later stage you can tidy this up

§ So here is a half completed version of the 
whole program...

Testing via Stubs
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import java.util.*;

public class GST {

public static void main(String[] args) {

int total = 0, totalTax = 0;

char cat = 'A'; //anything but 'Q'

while (cat != 'Q') {

cat = getCat();

if (cat !='Q') {

int price = getPrice();

int tax = taxOn( cat, price);

int cost = price + tax;

total = total + cost;

totalTax= totalTax+ tax;

Example
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//all values in cents

DisplayInDollars("nett price", price);

DisplayInDollars("item tax", tax);

DisplayInDollars("item cost", cost);

DisplayInDollars("total tax", totalTax);

DisplayInDollars("total cost", total);

}//end if

}//end while

System.out.println("good bye");

}//end main

Example
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private static char getCat() {

char c = 'A';

Scanner kb = new Scanner(System.in);

do {

System.out.println("Enter a category - Z, G or 

Q:");

c = kb.next().charAt(0);

c = Character.toUpperCase(c);

if ((c != 'Z')&&(c != 'G')&&(c != 'Q'))

System.out.println("*Error-invalid category");

}while((c != 'Z')&&(c != 'G')&&(c != 'Q'));

return c;

}//end of getCat

Example
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private static int getPrice() {

System.out.println("** getPrice Stub **");

System.out.println("Enter price in cents");

Scanner kb = new Scanner(System.in);

int cents = kb.nextInt();

return cents;

}//end of getPrice

private static int taxOn(char cat, int price){

if (cat == 'G' ) return price/10;

else return 0;

}//end of taxon

Example
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private static void DisplayInDollars(String 

msg, int cents)

{

System.out.println("*DisplayInDollars Stub*");

System.out.println("Message is: " + msg);

System.out.println("Cents value: " + cents);

}//end of DisplayInDollars

}//end of class GST

Example
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§ And here is a complete version of the 

method DisplayInDollars:
private static void DisplayInDollars(String msg, 

int cents)

{

String text;

int dollars = cents / 100;

cents = cents % 100;

text = msg + " = $" + dollars + ".";

if (cents < 10) text = text + "0" + cents;

else text = text + cents;

System.out.println(text);

}//end of DisplayInDollars

Example
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GST UML Class Diagram
GST

- category: char

- priceInCents: int

- taxInCents: int 

- costInCents: int

+ readCategory(): void

+ readPrice(): void

+ calculateTax(): void

+ calculateCost(): void

+ getCategory(): char

+ getPrice(): int

+ getTax(): int

+ getCost(): int

+ DisplayInDollarsInputData(): void

+ DisplayInDollars (String, int): void
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§ Here is a complete working version
// ICT167 Topic 4 Case Study in Program Design

// Object-oriented Version GSTv2 class

// P S Dhillon

import java.util.*;

public class GSTv2 {

// instance variables

private char category;

private int priceInCents;

private int taxInCents;

private int costInCents;

Complete GST Class
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// input methods readCategory() and readPrice()

public void readCategory(){

char c = 'A';

Scanner kb = new Scanner(System.in);

do {

System.out.println("Enter a category-Z,G or Q:");

c =  kb.next().charAt(0);

c = Character.toUpperCase(c);

if ((c != 'Z')&&(c != 'G')&&(c != 'Q'))

System.out.println("*Error-invalid category");

}while((c != 'Z')&&(c != 'G')&&(c != 'Q'));

category = c;

}//end of getCat

Complete GST Class



85

public void readPrice() {

System.out.println("Enter price in cents");

Scanner kb = new Scanner(System.in);

priceInCents = kb.nextInt();

}//end of getPrice

Complete GST Class



86

// calculate tax and cost methods

public void calculateTax() {

if (category == 'G' ) 

taxInCents = priceInCents/10;

else taxInCents = 0;

}//end calculateTax

public void calculateCost() {

costInCents = priceInCents + taxInCents;

}// end calculateCost

Complete GST Class
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// get methods

public char getCategory() {

return category;

}

public int getPrice() {

return priceInCents;

}

public int getTax() {

return taxInCents;

}

public int getCost() {

return costInCents;

}

Complete GST Class
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// output methods

public void DisplayInDollarsInputData() {

DisplayInDollars("nett price ", priceInCents);

DisplayInDollars("item tax ", taxInCents);

DisplayInDollars("item cost ", costInCents);

}

Complete GST Class
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public void DisplayInDollars(String msg, int 

cents){

String text;

int dollars = cents / 100;

cents = cents % 100;

text = msg + " = $" + dollars + ".";

if (cents < 10) text = text + "0" + cents;

else text = text + cents;

System.out.println(text);

}//end of DisplayInDollars

}//end class GSTv2

Complete GST Class
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// File: GSTv2Demo

public class GSTv2Demo {

public static void main(String[] args) {

// create a new object, call it: calculator

GSTv2 calculator = new GSTv2();        

int totalCost = 0;

int totalTax = 0;

calculator.readCategory();

GST Client
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while (calculator.getCategory() != 'Q') {

calculator.readPrice();

calculator.calculateTax();

calculator.calculateCost();

totalCost = totalCost+calculator.getCost();

totalTax = totalTax+calculator.getTax();

GST Client
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// all values are in cents

calculator.DisplayInDollarsInputData();

calculator.DisplayInDollars("total tax ", 

totalTax);

calculator.DisplayInDollars("total cost ", 

totalCost);

calculator.readCategory();

}//end while

System.out.println("Good bye");

}//end main

}//end GSTv2Demo class

GST Client
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