
Topic 4
Programming
with Methods

ICT167 Principles of

Computer Science

© Published by Murdoch University, Perth, Western Australia, 2020.

This publication is copyright. Except as permitted by the Copyright Act no part of it

may in any form or by any electronic, mechanical, photocopying, recording or any

other means be reproduced, stored in a retrieval system or be broadcast or

transmitted without the prior written permission of the publisher

3

§ Understand the use of private helper

methods hidden from the public interface

of a class

§ Know that the calling object can be omitted

if it is the same as the calling object in the

invoking method

§ Know that a main program can appear in

any class including the class which it uses

§ Understand how to use static variables

and static methods

Objectives

4

§ Explain the uses of static variables and

static methods

§ Understand the meaning and use of the

reserved word this in Java

§ Be able to use the common static methods

in the Math class

§ Explain what a wrapper class is and why it

is used

§ Be able to wrap and unwrap primitive values

Objectives

5

§ Understand the automatic boxing and

unboxing of wrapper classes in Java

§ Make use of common methods in the

wrapper classes

§ Be able to design a Java program in a top-

down manner

§ Be able to test a complex program using

driver programs and stubs

Reading – Savitch: Chapters 5.2, 6.2 – 6.3

Objectives

6

§ The class SpeciesFourthTry discussed in

Topic 3 has the following attributes and

methods:
// Class from Topic 3 – skeleton only

// includes equals method

import java.util.Scanner;

public class SpeciesFourthTry {

// Instance variables

private String name;

private int population;

private double growthRate;

Example Re-visited

7

// Methods

public void readInput()

{

// …. code for the method readInput

}

public void writeOutput()

{

// …. code for the method writeOutput

}

public int predictPopulation(int years)

{

// …. code for the method

}

Example Re-visited

8

// Accessor or Get methods

public String getName()

{

return name;

}

public int getPopulation()

{

return population;

}

public double getGrowthRate()

{

return growthRate;

}

Example Re-visited

9

// Mutator or Set method

public void setSpecies(String newName,

int newPopulation, double

newGrowthRate)

{

// … code for the method set

}

Example Re-visited

10

// Equals method: tests equality of 2 species

public boolean equals(SpeciesFourthTry

otherObject)

{

return

((this.name.equalsIgnoreCase(otherObject.name))

&&(this.population == otherObject.population)

&&(this.growthRate == otherObject.growthRate));

}

} // end class SpeciesFourthTry

Example Re-visited

11

Example UML Class Diagram
SpeciesFourthTry

- name: String

- population: int

- growthRate: double

+ readInput(): void

+ writeOutput(): void

+ predictPopulation(): int

+ setSpecies(String newName, int newPopulation,

double newGrowthRate): void

+ getName(): String

+ getPopulation(): int

+ getGrowthRate(): double

+ equals (SpeciesFourthTry otherObject): boolean

12

import java.util.Scanner;

/** Client Program / Test program */

public class SpeciesFourthTryDemo {

public static void main(String[] args) {

SpeciesFourthTry s1= new SpeciesFourthTry();

SpeciesFourthTry s2 =new SpeciesFourthTry();

int numberOfYears, futurePopulation;

System.out.println("Enter number of years:");

Scanner keyboard = new Scanner(System.in);

numberOfYears = keyboard.nextInt();

s1.readInput();

s1.writeOutput();

Example Client

13

futurePopulation = s1.predictPopulation(

numberOfYears);

// …………………

s2.setSpecies("Klingon ox", 10, 15);

s2.writeOutput();

if (s1.equals(s2))

System.out.println("Two species are same");

else

System.out.println("Two species not same");

}// end main

}// end SpeciesFourthTryDemo

Example Client

14

§ A method in a class might involve a lengthy or complex

calculation

§ So break it down into smaller parts

§ Use helper methods to perform some of the parts

§ Helper methods can be declared to be private

§ They are not part of the public interface of the class:

they are part of the implementation

§ Look at the following example (class Oracle) from

Savitch to see how helper methods are invoked

Methods Calling Methods

15

import java.util.Scanner;

public class Oracle {

private String oldAnswer = "The answer is in your

heart.";

private String newAnswer;

private String question;

public static void main(String[] args) {

Oracle delphi = new Oracle();

delphi.chat();

}// end main

private void update() {

oldAnswer = newAnswer;

}

Example: Oracle Class

16

public void chat() {

System.out.println("I am the oracle.");

System.out.println("I will answer questions.");

Scanner keyboard = new Scanner(System.in);

String response;

do {

answer();

System.out.println("Do you wish to ask

another question?");

response = keyboard.next();

}while(response.equalsIgnoreCase("yes"));

System.out.println("Oracle will now rest.");

}

Example: Oracle Class

17

private void answer() {

System.out.println("What is your question?");

Scanner keyboard = new Scanner(System.in);

question = keyboard.nextLine();

seekAdvice();

System.out.println("You asked the question:");

System.out.println(“ ” + question);

System.out.println("Now, here is my answer:");

System.out.println(oldAnswer);

update();

}

Example: Oracle Class

18

private void seekAdvice() {

System.out.println("I need some help on that.");

System.out.println("Please give 1 line advice.");

Scanner keyboard = new Scanner(System.in);

newAnswer = keyboard.nextLine();

System.out.println("Thanks. That helped lots.");

}

} // end class Oracle

Example: Oracle Class

19

§ See how the calling object can be omitted

(when calling the helper method) if it is the

same as the calling object in the invoking

method

§ The calling object delphi invokes its own

method chat() as

delphi.chat();

§ Within delphi.chat(), the helper method is

invoked without using the name of the

object and the dot notation, as follows:

Methods Calling Methods

20

public void chat () {

……

answer();

……

}

§ answer() is a helper (private) method which calls

its two helper methods as follows:
private void answer() {

……

seekAdvice();

……

update();

}

Methods Calling Methods

21

§ Also notice (in the Oracle class example)

that the main() method has been placed

inside the class which it uses

§ The main() method in this case acts like a client

and is useful for testing purposes

§ Note that within the main() method, you

must create an object of the class before

you can invoke any of the methods

Methods Calling Methods

22

§ Eg: to invoke the method chat() within

main(), you need to create an object of type

Oracle in the usual way:

Oracle delphi = new Oracle();

§ And then invoke a method of this object as:

delphi.chat();

§ Since main() is a static method, it belongs

to the class, and there will be only one

main() method

Methods Calling Methods

23

§ When user executes the program, the JVM
(Java Virtual Machine) looks for the main()

method.

§ The main() method starts running, creates

an object delphi, invokes its chat()

method (which uses a helper method which

in turn uses two helper methods), and gets

the stuff done

Methods Calling Methods

24

§ The reserved word this in Java stands for

the name of the current (calling) object

§ That is, it refers to the object that contains the

reference

§ Methods called in an object definition file do

not need to reference itself (the object)

§ You may either use "this.", or omit it,

since it is presumed

§ For example, if answer() is a method

defined in the class Oracle:

The reserved Word this

25

public class Oracle {

...

public void chat() {

……

// One way to invoke the answer() method

// defined in this file is:

// this.answer ();

// Another way is to omit "this."

answer (); // "this." is presumed here

……

}

...

} // end class Oracle

The reserved Word this

26

When an Object is Required

§ Methods called outside the object definition

require an object name to precede the

method name

§ For example:

Oracle delphi = new Oracle();

// delphi is not part of the

definition // code for Oracle

...

// chat is a method defined in Oracle

delphi.chat();

...

27

When an Object is Required

§ Similarly in another program, the call to

method chat() may be

Oracle myObject = new Oracle();

myObject.chat();

§ And the call to method answer () in this

case would mean
myObject.answer();

28

static Variables
§ When a Java program is running, if

something is static then there is only one

copy of it, no matter how many objects are

created

§ Static variables are shared by all objects of a

class
§ Variables declared static final are

considered constants – their values cannot be

changed. Eg:

public static final int UPPER_LIMIT = 999;

§ Variables declared static (without final) can

be changed

private static int counter;

29

static Variables
§ Only one instance of the static variable exists

which can be accessed by all objects of the

class

§ Static variables can be public or private –

should normally be private and should be

accessed or changed only by accessor and

mutator methods

§ Static variables are also called class

variables

§ Therefore, Java has three kinds of

variables: local variables, instance

variables, and static variables

30

Local, instance, and

static variables

§ local variables: declared in a method

§ instance variables: declared in a class

definition outside any method – belong to an

object

§ static variables: class variables - every

object shares the one and only one

31

static Methods

§ Some methods may have no relation to any

type of object

§ Eg: a method to compute the maximum of two

numbers or a method to find the square root of

a number

§ In such cases a method can be declared to

be static

32

static Methods

§ Eg:

public class MyClass {

…

public static boolean isPositive(int n){

return (n>0);

}

…

} // end MyClass

33

static Methods

§ The static method must still belong to a

class

§ It does not need a calling object - the class

name is normally used instead during its

invocation. Eg:

if (MyClass.isPositive(x))

System.out.println(“Positive”);

§ static methods are also called class

methods

34

static Methods

§ Note that it is possible to create an object of
MyClass and use it to invoke the

isPositive() method, but doing so can be

confusing to people reading your code

§ Note that all other methods (non-static)

must be part of an object, so an object must

exist before they can be invoked

§ Since a static method does not need a

calling object, it cannot refer to a (non-

static) instance variable of the class

35

static Methods
§ Likewise, a static method cannot call a

non-static method of the class (unless it

creates an object of the class to use as a

calling object)

§ Use static methods:
§ For methods which do not involve an object

§ Small private helper methods in a class

§ Generally useful methods to do with numbers

or Strings or input/output
§Eg: finding the maximum of two numbers, computing

a square root, generating a random number

36

static Methods

§ Static methods are commonly used to

provide libraries of useful and related

methods

§ Examples:
§ The main method in any class

§ The Math class
§Automatically provided with Java

§Methods include pow, sqrt, max, min, and many more

methods

37

Example Class
// File: CircleCalculator.java

/** Class with static methods to perform calculations

on circles. */

public class CircleCalculator {

// constant

public static final double PI = 3.14159;

public static double getArea(double radius) {

return (PI*radius*radius);

}

public static double getCircumference(double radius)

{

return (PI*(radius + radius));

}

} // end class CircleCalculator

38

Example Client

// File: CircleCalculatorDemo.java

import java.util.Scanner;

public class CircleCalculatorDemo {

public static void main(String[] args) {

double radius;

System.out.println("Enter the radius of a "

+ "circle in inches:");

Scanner kb = new Scanner(System.in);

radius = kb.nextDouble();

System.out.println("A circle of radius " +

radius + " inches");

39

Example Client

System.out.println("has an area of " +

CircleCalculator.getArea(radius) +

" square inches,");

System.out.println(" and circumference of "

+CircleCalculator.getCircumference(radius)+

" inches.");

} // end main

} // end class CircleCalculatorDemo

40

§ The predefined class Math is automatically

provided as part of the Java language, and

contains a number of the standard

mathematical methods

§ All these methods are static and are

called by using the class name Math in

place of a calling object

static Methods in Main

Class

41

§ Eg:

System.out.println("The maximum of 5 and

7 is = " +

Math.max(5,7));

Powers: Math.pow(2.0, 3.0) returns 8.0

Absolute value: Math.abs(-4) returns 4

Math.abs(5) returns 5

Math.abs(-5.1)returns 5.1

Maximum: Math.max(5, 6) returns 6

Minimum: Math.min(5.9, 6.5) returns 5.9

static Methods in Main

Class

42

§ Eg:

Rounding: Math.round(6.8) returns 7

Math.round(6.49) returns 6

Ceiling: Math.ceil(3.2) returns 4.0

§ returns a whole number of type double

§ need to cast if you want an int. Eg:

int j = (int)Math.ceil(3.2);

Floor: Math.floor(3.2) returns 3.0

§ this too returns a whole number of type double,

and need to type cast if you want an int

static Methods in Main

Class

43

§ Eg:

Square root: Math.sqrt(4.0) returns 2.0

Random: Math.random() returns a random

number greater than or equal to

0.0 and less than 1.0

§ See the on-line documentation for many more

§ Note the Math class also contains some static

constants such as Math.PI which is a double with

value approximately equal to p.

static Methods in Main

Class

44

NOTE: main method

§ You can put a main method in any class

§ See class Oracle above in these slides

§ Usually main is by itself in a class definition

§ Sometimes it makes sense to have a main

method in a regular class definition

§ When the class is used to create objects, the

main method is ignored

§ Adding a diagnostic main method to a class

makes it easier to test the class's methods

45

NOTE: main method

§ You can put a main method in any class

§ Because main must be static, you cannot invoke

non-static methods of the class in main unless

you create an object of the class

§ Normally you would not put a main method in a

class that is used to create objects unless it is for
test purposes

46

Wrapper Classes
§ As we know, Java treats primitive types and

class types differently

§ Eg: the variables (arguments) of primitive types

are passed to other methods using call-by-value

whereas object variables are passed using call-

by-reference

§ Similarly, the assignment operator == behaves

differently for primitive types and for class types

§ Occasionally we need to be able to make

things uniform, and treat a primitive type as

an object

47

Wrapper Classes
§ Java has one special class associated with

each primitive type - called wrapper classes

- they "wrap up" the primitive data types as

objects

§ Eg: there is an Integer class corresponding to
int

§ Other wrapper classes include Double, Long,

Character and Boolean corresponding to the

primitive types double, long, char and

boolean, respectively

§ All primitive types have an equivalent class

48

Wrapper Classes

§ Why?

§ Some data structures which contain many things

are designed to contain Objects only

§ The Wrapper classes have various useful

methods, including ones to convert back to

primitive types

49

Primitive

type

Class type Method to convert back

to primitive type

int Integer intValue()

long Long longValue()

float Float floatValue()

double Double doubleValue()

char Character charValue()

Wrapper Classes

50

§ Converting a primitive to a wrapper object,

for example:

Integer n = new Integer(78);

§ declares an instance n of the Integer wrapper

class with the value 78

§ The object n is just an Object version of the

number 78

§ The int 78 is wrapped up as an Object

belonging to the Class Integer

Wrapper Classes

51

§ Unwrapping, for example:

int i = n.intValue();

§ the method intValue in the Class Integer

returns the int which is wrapped up inside the

wrapper object

§ Similarly:

Double D = new Double(4.5);

double d = D.doubleValue();

Wrapper Classes

52Automatic Boxing and

Unboxing

§ Wrapping (converting/type casting) a value

of a primitive to an object of its

corresponding wrapper class is called

boxing

§ Starting with Java 5.0, boxing is done

automatically. Eg:

Integer n = 78;

§ is equivalent to writing:

Integer n = new Integer(78);

53Automatic Boxing and

Unboxing

§ Similarly, an object of a wrapper class can be

converted to a value of a corresponding

primitive type automatically (called automatic

unboxing)

int i = n;

§ is equivalent to:

int i = n.intValue();

54Automatic Boxing and

Unboxing

§ Note that automatic boxing and unboxing

also apply to parameters

§ A primitive argument can be provided for a

corresponding formal parameter of the

associated wrapper class

§ A wrapper class argument can be provided for a

corresponding formal parameter of the

associated primitive type

55

Useful Constants and static

Methods in Wrapper Classes

§ Integer.MAX_VALUE returns the largest value

allowed in type int

§ Also, Integer.MIN_VALUE,

Double.MAX_VALUE, Double.MIN_VALUE,

etc.

§ Static methods in the wrapper classes can

be used to convert a string to the
corresponding number of type int, long,
float, or double

56

Useful Constants and static

Methods in Wrapper Classes

§ Eg:

String str = “499.95”;

double d = Double.parseDouble(str);

§ or use:

Double.parseDouble(str.trim());

§ if the string has leading or trailing

whitespaces

57

Useful Constants and static

Methods in Wrapper Classes
§ Similarly:

String numString = “727”;

int i = Integer.parseInt(numString);

long l = Long.parseLong(numString);

float r = Float.parseFloat(“499.95”);

§ Methods for converting strings to the

corresponding numbers are also available.

Eg: Integer.toString(78),
Long.toString(78),

Float.toString(499.95), and

Double.toString(499.95)

58

Character Class static

Methods

§ The Character class wraps a char. Use:

Character c = new Character(‘a’);

§ to wrap a char

§ Checks if c1 and c2 wrap the same char

c1.equals(c2);

// returns ‘A’

Character.toUpperCase(‘a’);

59Character Class static

Methods
§ Eg:

char firstChar = 'a';

char secondChar =

Character.toUpperCase(firstChar);

Character.toLowerCase(‘A’)// returns ‘a’

Character.isUpperCase(‘A’)// returns

true

Character.isLowerCase(‘A’)//returns

false

// returns false

Character.isWhitespace(‘A’)

60Character Class static

Methods
§ Eg:

// returns true if response is a digit

// character in the range 0 to 9 and

// false otherwise

Character.isDigit(response)

Character.isLetter(‘A’) // returns true

Character.isLetter(‘?’)// returns false

// returns the String “a”

Character.toString(‘a’)

61

Top-Down Design

§ = stepwise refinement = divide and conquer

= breaking the problem down into smaller

steps

§ In pseudo-code, write a list of sub-tasks that

the method must do

§ If you can easily write Java statements for a

sub-task, you are finished with that sub-task

§ If you cannot easily write Java statements

for a sub-task, treat it as a new problem and

break it up into a list of sub-tasks

62

Top-Down Design

§ Eventually, all of the sub-tasks will be small

enough to easily design and code

§ Solutions to sub-tasks might be

implemented as private helper methods

§ Top-down design is also known as divide-

and-conquer or stepwise refinement

63

Top-Down Design

§ Here is an example problem:

§ The user is given a list of items of various nett

prices

§ Some items are 0% rated for the GST, call

these category Z

§ The other items are rated at 10% for the GST,

call these category G

64

Top-Down Design

§ The user should enter the category of each item

and then the price in cents

§ The program should display the nett price, tax,

and total cost of each item, and display a

running total of tax and total cost

§ The user can enter category ‘Q’ to finish

§ Display all amounts in dollars and cents

65

Top-Level Pseudo-code

total = 0

totalTax = 0

cat = ’A’ //anything but ‘Q’

while (cat != ‘Q’) {

cat = get category letter from user

if (cat !=’Q’){

price = get cents from user

tax = taxOn(cat, price)

cost = price + tax

total = total + cost

totalTax= totalTax + tax

66

Top-Level Pseudo-code

//all values in cents

DisplayInDollars(“net price”, price)

DisplayInDollars(“item tax”, tax)

DisplayInDollars(“item cost”, cost)

DisplayInDollars(“total tax”, totalTax)

DisplayInDollars(“total cost”, total)

}//end if

}//end while

say goodbye

§ In order to complete the description of the

program we then need to consider the

procedures which are used here

67

Tips for Writing Methods

§ Apply the principle of encapsulation and

detail hiding by using the public and private

modifiers judiciously

§ If the user will need the method, make it part of

the interface by declaring it public

§ If the method is used only within the class

definition (a helper method, then declare it

private)

68

Tips for Writing Methods

§ Create a main method with diagnostic (test)

code within a class's definition

§ Run just the class to execute the test/diagnostic

program

§ When the class is used by another program the

class's main method is ignored

69Program Testing:

Test Methods Separately
§ Carefully test each method individually so

you are (quite) sure that each method works

correctly

§ Test programs are sometimes called driver

programs

§ A driver program is usually a main program

(main method) designed only to test that a

method works

§ Keep it simple: test only one new method at a

time

§Driver program should have only one untested

method

70Program Testing:

Test Methods Separately
§ If method A calls method B, then we think of

method A being above method B. There are two

approaches to testing:

§ Top down testing

§Also called testing using stubs: test method A

first and use a stub for method B

§A stub is a method that stands in for the final

version and does little actual work. It usually

does something as trivial as printing a message

or returning a fixed value. The idea is to have it

so simple that you are nearly certain it will work

71

Program Testing:

Test Methods Separately

§ Bottom up testing

§Test method B fully (eg, using a driver program)

before testing method A

§Bottom-up testing means being sure that

method B works before testing method A

§Eg: check the procedure for getting a category

letter from the user before checking the overall

program

72

§ Here is a program including the category

procedure and a driver program
import java.util.*;

public class CatTest {

public static void main(String[] args) {

// driver method for test purposes only

char cat = ‘a’;

while (true) {

cat = getCat();

System.out.println(“Your category was ” +cat);

} //end of while

} //end of main

Example

73

private static char getCat() {

char c;

Scanner kb = new Scanner(System.in);

do {

System.out.println(“Enter a category Z, G or Q”);

c = kb.next().charAt(0);

c = Character.toUpperCase(c);

if ((c != 'Z')&&(c != 'G')&&(c != 'Q'))

System.out.println("*Error-invalid category");

} while ((c !=’Z’)&&(c!=’G’)&&(c!=’Q’));

return c;

} //end of getCat

} //end of class

Example

74

§ Sometimes you want to test a large method

before testing all the smaller methods which

it calls

§ For example, just to make sure that the

overall approach looks promising

§ Use a stub = a simplified version of a

method for testing purposes

§ Then just include a stub for any small

methods which you have not developed or

checked yet

Testing via Stubs

75

§ Eg: here is a stub for DisplayInDollars()
private static void DisplayInDollars

(String msg, int cents) {

System.out.println(“DisplayInDollars Stub”);

System.out.println(“Message is: ” + msg);

System.out.println(“Cents value is: ” + cents);

}

§ At some later stage you can tidy this up

§ So here is a half completed version of the
whole program...

Testing via Stubs

76

import java.util.*;

public class GST {

public static void main(String[] args) {

int total = 0, totalTax = 0;

char cat = 'A'; //anything but 'Q'

while (cat != 'Q') {

cat = getCat();

if (cat !='Q') {

int price = getPrice();

int tax = taxOn(cat, price);

int cost = price + tax;

total = total + cost;

totalTax= totalTax+ tax;

Example

77

//all values in cents

DisplayInDollars("nett price", price);

DisplayInDollars("item tax", tax);

DisplayInDollars("item cost", cost);

DisplayInDollars("total tax", totalTax);

DisplayInDollars("total cost", total);

}//end if

}//end while

System.out.println("good bye");

}//end main

Example

78

private static char getCat() {

char c = 'A';

Scanner kb = new Scanner(System.in);

do {

System.out.println("Enter a category - Z, G or

Q:");

c = kb.next().charAt(0);

c = Character.toUpperCase(c);

if ((c != 'Z')&&(c != 'G')&&(c != 'Q'))

System.out.println("*Error-invalid category");

}while((c != 'Z')&&(c != 'G')&&(c != 'Q'));

return c;

}//end of getCat

Example

79

private static int getPrice() {

System.out.println("** getPrice Stub **");

System.out.println("Enter price in cents");

Scanner kb = new Scanner(System.in);

int cents = kb.nextInt();

return cents;

}//end of getPrice

private static int taxOn(char cat, int price){

if (cat == 'G') return price/10;

else return 0;

}//end of taxon

Example

80

private static void DisplayInDollars(String

msg, int cents)

{

System.out.println("*DisplayInDollars Stub*");

System.out.println("Message is: " + msg);

System.out.println("Cents value: " + cents);

}//end of DisplayInDollars

}//end of class GST

Example

81

§ And here is a complete version of the

method DisplayInDollars:
private static void DisplayInDollars(String msg,

int cents)

{

String text;

int dollars = cents / 100;

cents = cents % 100;

text = msg + " = $" + dollars + ".";

if (cents < 10) text = text + "0" + cents;

else text = text + cents;

System.out.println(text);

}//end of DisplayInDollars

Example

82

GST UML Class Diagram
GST

- category: char

- priceInCents: int

- taxInCents: int

- costInCents: int

+ readCategory(): void

+ readPrice(): void

+ calculateTax(): void

+ calculateCost(): void

+ getCategory(): char

+ getPrice(): int

+ getTax(): int

+ getCost(): int

+ DisplayInDollarsInputData(): void

+ DisplayInDollars (String, int): void

83

§ Here is a complete working version
// ICT167 Topic 4 Case Study in Program Design

// Object-oriented Version GSTv2 class

// P S Dhillon

import java.util.*;

public class GSTv2 {

// instance variables

private char category;

private int priceInCents;

private int taxInCents;

private int costInCents;

Complete GST Class

84

// input methods readCategory() and readPrice()

public void readCategory(){

char c = 'A';

Scanner kb = new Scanner(System.in);

do {

System.out.println("Enter a category-Z,G or Q:");

c = kb.next().charAt(0);

c = Character.toUpperCase(c);

if ((c != 'Z')&&(c != 'G')&&(c != 'Q'))

System.out.println("*Error-invalid category");

}while((c != 'Z')&&(c != 'G')&&(c != 'Q'));

category = c;

}//end of getCat

Complete GST Class

85

public void readPrice() {

System.out.println("Enter price in cents");

Scanner kb = new Scanner(System.in);

priceInCents = kb.nextInt();

}//end of getPrice

Complete GST Class

86

// calculate tax and cost methods

public void calculateTax() {

if (category == 'G')

taxInCents = priceInCents/10;

else taxInCents = 0;

}//end calculateTax

public void calculateCost() {

costInCents = priceInCents + taxInCents;

}// end calculateCost

Complete GST Class

87

// get methods

public char getCategory() {

return category;

}

public int getPrice() {

return priceInCents;

}

public int getTax() {

return taxInCents;

}

public int getCost() {

return costInCents;

}

Complete GST Class

88

// output methods

public void DisplayInDollarsInputData() {

DisplayInDollars("nett price ", priceInCents);

DisplayInDollars("item tax ", taxInCents);

DisplayInDollars("item cost ", costInCents);

}

Complete GST Class

89

public void DisplayInDollars(String msg, int

cents){

String text;

int dollars = cents / 100;

cents = cents % 100;

text = msg + " = $" + dollars + ".";

if (cents < 10) text = text + "0" + cents;

else text = text + cents;

System.out.println(text);

}//end of DisplayInDollars

}//end class GSTv2

Complete GST Class

90

// File: GSTv2Demo

public class GSTv2Demo {

public static void main(String[] args) {

// create a new object, call it: calculator

GSTv2 calculator = new GSTv2();

int totalCost = 0;

int totalTax = 0;

calculator.readCategory();

GST Client

91

while (calculator.getCategory() != 'Q') {

calculator.readPrice();

calculator.calculateTax();

calculator.calculateCost();

totalCost = totalCost+calculator.getCost();

totalTax = totalTax+calculator.getTax();

GST Client

92

// all values are in cents

calculator.DisplayInDollarsInputData();

calculator.DisplayInDollars("total tax ",

totalTax);

calculator.DisplayInDollars("total cost ",

totalCost);

calculator.readCategory();

}//end while

System.out.println("Good bye");

}//end main

}//end GSTv2Demo class

GST Client

End of Topic 4

